Number: 11.01

HOST MAINFRAME PROGRAM

PLANNING AND DESIGN

August 2001

Number: 11.01
Effective: 08/01/01

TABLE OF CONTENTS

1 INTRODUCGTION L.ttt e e e e e e e et e e e e e e e e ee e e e e e e e e s eea e e e e e e e s s s eeaaaaeneeaeas 1
11 PURPOSE ...ttt ettt e et e ettt e e e e e e e et e e e e e e e e eee e e e e e ee e e e s et aaaeeeeeesssan 1

1.2 SCOPE ... ettt e e et e e e e e e e e et ———eeee et e e ee————eeeeee e e e e —raaaeeee e i ———raaaas 1

1.3 APPLICABILITY ... itiiieee e e ettt e e e e e et e ettt e e e e e e e et e e e e e e e e s s e e e e e e e e e s s e et e e eeeeeeesssesaaeeeeeeessssaneeeens 1

14 REQUESTS FOR TRAININGuuiiiiiiieeiie ittt e e e e e e e e ettt e e e e e e et e e e e e e e s sea et e e e e e eesssseebaaseeeeessssans 2

15 REFERENCES iuttiiiieee e e e ettt e e e e e e e oottt e e e e e e e e e e et e e e e e e e eea e beeeeeeessseesaaaaeeeeesssseesaaaseeeeessssan 2

1.6 SUGGESTIONS AND COMMENTSuuiiiiiee ettt e e e e e e e et e e e e e e e e et e e e e e e e e sea e e e e e e e e s s eseseraeeeeeeas 2

2 PROGRAM PLANNING ...ttt ettt e e e e e e e e e e e e e e e e s e e e e e e e e e s e e eneeaens 2
2.1 PROGRAM SPECIFICATION FORMS i ittt ettt eeeeeaan 3

2.2 NAMING CONVENTIONS ... ittteii e e e e e ettt e e e e e e e e et e e e e e e e e ees e e e e eeessseeaeaeaeeeeesssseessaaneeeeessssan 3

23 PAGE SIZE SPECIFICATIONSuttiiiiie et e ettt e e e e e e e e et e e e e e e e e ettt eeeeeesseea e eeeeeeesssseesaaneeeeessssan 4

24 CONSOLE MESSAGESccoiiiiiie ettt e e e ettt e e e e e e e ettt e e e e e e e et e e e e e e e e se e e e e e e e s s s eeaaraeeeeeens 4

25 JOB RE-EXECUTION CAPABILITIESuuiiiiieei e eettteee e e e e e e e ettt e e e e e s e et e e e e e e e s s sea e e e e eessseeaaraeeeeeeas 4

2.5.1 AUTOMATIC RERUN ... ittt ettt ettt e e e e e e ettt e e e e e e e e e e e e e e e e e e e raeeeeeens 4

2. 0.2 RESTART e e ettt e et e e e e e e e e e e ———raaaas 4

2.6 DIRECT ACCESS STORAGEuuttiiiiiee it e ettt e e e e e e e ettt e e e e e e e et e e e e e s e s see e aeeeeeeeessseeaaaaeeeeessssae 5

2.6.1 REQUESTING DIRECT ACCESS STORAGEcccuttiiiieee e e e eeeeee e e e e e e e e e e e e eaee e e e 5

2.6.2 PERMANENT DATASETS L. ..ooiiiiiii ittt e ettt e e e e e e e e e e e e e e e e e e raeeeeeens 5

2.6.3 TEMPORARY DATA SETSuuiiiiiii it e ettt e e e e e e e ettt e e e e e e s e e e e e e e e e e e e e raeeeeeens 5

2.7 MAGNETIC TAPEottt oo e et ettt e e e e e e ettt e e e e e e e e et e e e e eeeesseeaaaaaeeeeesssseesaaaneeeeessssan 5

2.7.1 REQUESTING MAGNETIC TAPEottt ettt e e e e e e e e e e e e ae e e e e s 6

2.7.2 MAGNETIC TAPE JOB SUBMISSION PROCEDUREScciiicvtiiiieeeeeeeeeeieee e e e e e s eearaeeee e 6

2.7.3 STORING REEL/CARTRIDGE TAPES.........ccciiuiie e e e e 6

2.8 GENERATION DATA GROUPSttt e ettt e raeeeeaeas 6

29 USING OPERATING SYSTEM PROCEDURES...........ccciiiiittiiiiieeee e e e eeteee e e e e e e e eeea e e e e e e e e s e eeaaaeeeeaeeseeaans 6

2.9.1 CATALOGUED PROCEDUREScoiiiuittiiiiee e e ettt e e e ettt et e e e e e e e e e e e e e e e e e raeeeeaeas 6

2.9.2 INSTREAM PROCEDURESccccciiiiiiitiiiii e e ettt e e e e e e e et e e e e e e e e e et e e e e e e e e eeae e e eeaens 7

3 PROGRAM DESIGN ...ttt ettt e ettt e e e e e e e e et e e e e e e e e et e e e e e e e e e e enaeaens 8
3.1 PROGRAM STRUCTURE.iitttteie et e e et e e e e e e e e ettt e e e e e e e e et e e eeeeeseeeaaaaaeeeeeessseesaaeeeeeessssans 8

3.2 PROGRAM FUNCTION STRUCTURE CHART _..... . ciiiiiiiiiiiiiiie e e e e e eteee e e e e e e e e ae e e e e e e s e s eeaaaeeeeeeeeeeaans 9

3.3 STRUCTURED PROGRAMMING ..., ...uuuiiiiieeiieetiteee e e e e e e e e ete e e e e e e s e et e e e e e e e e e e et beeeeeeesssseaaraeeeeeeas 10

3.3.1 ITERATION VARIATION ... ooiiiiiiiee ettt e e e ettt e e e e e e e et e e e e e e e e et e e e e e e e s s eeaaraeneaeeas 12

3.3.2 THE CASE SELECTION STRUCTURES...........ciiiiitttiieeee e e e e eeeeee e e e e e e e e e e e s e e eaaraeeeaee s 13

3.3.3 "GO TO" STATEMENTS AND LABELSccciiiiiiitiiiii e ettt ee e e e e e e e e e 13

3.3.4 SEGMENTATIONeii ittt ieettteei et e e e e e ettt e e e e e e e ettt e e e e e e e et e e e e e e e s e s e aa b e e e e eeesssseanraneaeeeas 14

3.3.5 IDENTIFICATION L...oiiii ittt e e e e e e ettt e e e e e e e et e e e e e e e s e et e e e e e e e s e s eeaaaaaeeeeesssseeaaraeeaeeeas 14

3.3.6 ESTABLISHING IDENTIFICATION GUIDELINES...........uuiiiiieeiiiiecieieeeeee e e e eeeeee e e e e e e e eeaaeaeeee e 15

3.4 FLOWGCHART LOGIC ...ttt ettt e e e e e e ettt e e e e e e e et e e e e e e s s et aaeeeaeeeeean 15

3.5 PSEUDO-CODE LOGIC.........coiiiiiteei ettt e e et e ettt e e e e e e e e e e e e e e e s et eeeeeeseean 16

3.6 EFFICIENCY CONSIDERATIONSoiiiii it ittt e e e e e e e e ettt e e e e e e e e e e e e e e s s eees e e e e eeessseeabaaeeeeessseaes 16

3.7 FINE TUNING THE PROGRAM ciiiiii ittt e ettt e e e e e e e ettt e e e e e e e et e e e e e e s s et aaeeeaeeeeeans 17

3.8 REFERENCES itttiiiiee e ettt e e e e e e ettt e e e e e e e ettt e e e e e e s e e e aeeeeeeessessaaaaeeeeeessssessbaaeeeaessseaes 17

4 PROGRAMMING AND TESTING ..ottt ettt et e e e e e e e e e e e e e e e e e 17
4.1 PROGRAMMING LANGUAGES.........eeiiiii ittt eeee e e e ettt e e e e e e e ettt e e e e e e e et e e e e e e s seeataaeeeeeessean 17

4.2 UTILITY SOFTWARE ..ottt e e et e e e e e e e e ettt e e e e e e e et e et e e e e s s see e et e eaeessseeeraaeaeeessseains 18

Program Planning and Design Page i

Rel: August 1, 2001 (draft)

Number: 11.01
Effective: 08/01/01

4.3 PROGRAMMER PRODUCTIVITY TOOLS,uuuiiiiiii ettt e e e e et e e e e e e e e et e e e e e e e e eaan 18

4.4 PROGRAM TESTINGciiiiiiii ittt e e e et e e e e e e e e ettt e e e e e e e et e e e e e e e s s eeen e e e e e eaeeesseeaeaaeeeaeesseains 18

441 TEST DATA SETS. ...ttt ettt e e e e e e e et e e e e e e e e e e e e e e e e e s e earaeees 18

4.5 PROGRAM DOCUMENTATION ittt e e e e e e e ettt e e e e e e e et e e e e e e e e e e e e e e e e aeessseeneraaeaeeessseaes 19

5 PROGRAM IMPLEMENTATION ... et 19
51 SOURCE PROGRAM STORAGEuuiiiiiieei i et e e e e e e et e e e e e e e e ettt e e e e e e e e et eeeeeessseeaaraaneeeeas 19

5.2 LOAD MODULE PROGRAM STORAGEcuuuiiiiieeiiieeeeeee e e e e e e e et e e e e e e e e ee et e e e e e e s s eea e e eaesesean 19

5.3 CONVERTING FROM TEST TO PRODUCTION _.......uuiiiiieiiisceitieee e e e e e ettt e e e e e e et e e e e e e e e eenaraeneaeeas 20

54 USER'S DOCUMENTATION ...\ uuiitiiiiiee e ettt e e e e e e e e ettt e e e e e e e et e et e e e e e s eeeaaeaeeeeaeessseesebaaeaeeeesseaes 20

5.5 OPERATION'S DOCUMENTATION........uuiiiiee e ettt et e e e e e e e ettt e e e e e e e e et e e e e e e e e s s et eeeeeessseeaaranaeeeeas 20

5.6 SCHEDULING TEST JOBS........cciiiiititieii e e e et ettt e e e e e e e ettt e e e e e e e et e e e e e e e e e et eeeeeesssseaaranneeeeas 20

5.7 CREATING PRODUCTION JOB STREAMSuiiiiiiiii ettt e e e e e et e e e e e e e e et e e e e e e e s e eeaaraeneaeeas 20

Program Planning and Design Page ii

Rel: August 1, 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

1 INTRODUCTION

Standardized program specifications should provide programmers with uniform
specifications and information. This document will provide guidance for analysts who
must develop program specifications and for programmers who receive program
specifications.

1.1 Purpose

This document provides a common basis for the planning, development, and
designing of standardized application programs. It is intended to provide
guidance for data processing personnel who must develop applications or work
with programming specifications.

1.2 Scope

The scope of this document is limited to the identification of the resources and
forms that should be considered during the development of program
specifications, the supporting information that is required for the development of
the specifications, and a general description of how to present the information
required for program documentation. This document does not cover application
systems analysis, design, testing, and implementation.

1.3 Applicability

This document represents the State of Hawaii's Executive Branch's standards and
guidelines for the planning, development, and designing of application programs.
This document is intended to be used by both State agencies with data processing
personnel and contractors working for the State.

Because this document is intended to be used by application programmers during
the planning, development, and designing of applications in different programming
languages, words such as "should,” "avoid,” "minimize," "try," or "encouraged"
were included in the text. These words are intended to provide guidance for
people who are enhancing existing programs. But for any new program, these
words will be interpreted in their absolute sense of "will use,” "do not use," or
"shall use."

Program Planning and Design Page 1
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

14 Requests for Training

Any requests for training in structured analysis, design, program development, or
any programming language or technique should be coordinated through the
agency's dp coordinator.

15 References

Throughout this document, the phrase "Standards Document 07.05" will refer to
the State's “ICSD Operations Documentation Guide for Production Jobs." The
term "Production Services Branch" or “PSB” refers to ICSD's "Production Services
Branch." And the term "Applications Branch" refers to ICSD's "Client Services
(Applications Systems Development) Branches."

1.6 Suggestions and Comments
Submit suggestions or questions relating to this standard to:

Department of Accounting and General Services
Information and Communication Services Division
Planning and Project Management Office

Telephone: 586-1920

2 PROGRAM PLANNING

The systems analyst for an application system should provide the programmer with all
of the supporting documents for the successful creation of an application program.
One of the key documents is the system flow diagram that should show the position of
the program in the system. It shows the required input data and the required output
from the program. This system flow diagram should be carefully reviewed before
starting any program to acquaint the programmer with the environment that the program
will be required to operate in. This diagram shows all the planned programs, data files,
outputs, interfaces to and from the programs in the system, and interfacing utilities or
any other supporting software.

For each input file in the System Flow Diagram related to the program, review the
detailed description of the input file characteristics, and review the detailed layouts for
the records, transactions, parameters, and any control statements entered or generated
by the program that are specified on the program specification forms.

Program Planning and Design
Rel: August 1. 2001 (draft)

Page 2

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

2.1 Program Specification Forms

The State has many forms for the systems analysts to use in developing their
detailed system's internal specifications. The SDM documentation for the SIS
phase has a description of all these forms. Their selection is dictated by the
unique criteria and situations of the system and the program. Forms that have
generally been used for many systems at ICSD are:

EDPD S1

EDPD A-123

SDM 170

SDM 130

EDPD T-121

SDM 302

SDM 311

SDM 312

SDM 400

SDM 401

SDM 320

SDM 103

SDM 205

GX20-1816

Request for Services

Program Specification

Work Flow Schematic

General Procedure Description
Data Set Description Sheet
Detail File Description
File/Record Content

Segment or Record Description
General Output Description
Output Content

Record Layout

HIPO Chart - |

Display Layout (for On-Line Systems)

150/10/6 Print Chart (150 Columns)

2.2 Naming Conventions

All job name, step name, data set name, source module, load module, include
module, and program names must conform to the established naming conventions

Program Planning and Design
Rel: August 1. 2001 (draft)

Page 3

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

found in the State's "Job Control Language Standards,” standards document
11.02.

2.3 Page Size Specifications

A line-counting feature should be designed for report printing control. For COBOL
programs not using the Report Writer, the C01, End-of-Page special name should
be used. And for PL/I programs, the ENDPAGE conditional control block should
be used.

2.4 Console Messages

The only text that a program may send to the operator's console will be the status
of a program's execution. Any other text to be sent to the operator's console must
be approved by the Production Services Supervisor.

2.5 Job Re-execution Capabilities

As much as possible, application job streams will be designed so that they can be
resubmitted by the Production Services control clerk. If the job stream cannot be
resubmitted at any time, the aborted job stream will be returned to the submitter.
For jobs that can be restarted at a step after the first job step, restart points must
be documented in the operation's documentation. Any recovery procedures to be
followed before a job is resubmitted by the Production Services control clerk must
be defined in the operation's documentation.

2.5.1 Automatic Rerun

Jobs that can be rerun at any time must not affect the system catalog. These jobs
are typically edit, query, extract, or print only runs.

2.5.2 Restart
There are two ways to define a restart for a job:

a. RESTART parameter on the JOB statement to restart a job at a job
step (which is the preferred method), and

b. Checkpoints to restart a job within a job step.

Program Planning and Design Page 4
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

If printed output cannot be regenerated or is critical to the restart procedure, the
generated output should be directed to a temporary disk storage data set and the
report printed at the end of the job stream.

2.6 Direct Access Storage

Direct access storage is a necessary resource for the storage and retrieval of an
organization's data. ICSD has a limited number of devices that must be shared by
all agencies.

2.6.1 Requesting Direct Access Storage

The Systems Services Branch (SSB) will make available any required permanent
or temporary (i.e. “Test”) storage for applications on shared devices. The project
analyst must fill out and submit form ICSD T-121, "Data Set Description Sheet," to
request direct access storage areas at ICSD. This form must be submitted for all
disk storage requirements.

2.6.2 Permanent Data Sets

All permanent or production applications will have their data stored on the shared
devices managed by the SSB. The maintenance of permanent application data
sets is the responsibility of the agency. Example: Running Backup Jobs.

2.6.3 Temporary data Sets

Most program development requiring data to be saved during the development
process should allocate data sets on temporary storage devices by using the JCL
parameter, UNIT=3390,VOL=SER=XNZ001. Should a program require large
amounts of storage, for example in excess of four cylinders, the project system
analyst must make arrangements with the SSB. Temporary data sets will be
purged on a regularly scheduled basis.

2.7 Magnetic Tape

Magnetic tape storage may be used for the storage and retrieval of an
organization's data or for the long-term storage of data. There are a limited
number of drives for these tapes at ICSD that must be shared by all user
agencies. Any job stream requesting the availability of more than three tape
drives must have the prior approval of the Job Scheduler in the Production
Services Branch. A job should not use more than five (5) tape drives.

Program Planning and Design Page 5
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

2.7.1 Requesting Magnetic Tape

The project systems analyst must refer to standards document 07.05 for the
appropriate form and procedures to request tapes for any tape-oriented system.

2.7.2 Magnetic Tape Job Submission Procedures

Any test job requesting tape mounts must use a special job class code. The
appropriate code and required job statement coding may be found in the JCL
standards document 11.02. Any test job requiring tape mounts must be
submitted to the Production Services Branch in an appropriate pouch with an
ICSD Job Route card.

2.7.3 Storing Reel/Cartridge Tapes

ICSD has very limited space for the storage of reel/cartridge tapes. Only test
jobs that require frequent access to tapes may be stored in the Production
Services area. The project manager should ask the Production Services
Supervisor for space on these racks. The storage and security of the other
tapes are the responsibility of the user agency.

2.8 Generation Data Groups

Generation data groups are highly recommended for application systems. They
provide a very good mechanism for auditing, history, backup, and recovery for the
system.

The procedures for establishing a generation data group may be found in the JCL
standards document 11.02.

2.9 Using Operating System Procedures

The system developer communicates with the operating system, job scheduler,
and programs by job control statements. The ICSD compilation, load, and
execution "PROCs" are cataloged in data set EDPD.PROCLIBU. They should be
used to execute special functions in either the batch or on-line environment.
These "PROCs" are listed in the JCL standards document 11.02.

2.9.1 Catalogued Procedures

The default parameters for the cataloged procedures were chosen to provide
effective controls for the job scheduler to regulate the execution of steps, to

Program Planning and Design Page 6
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

retrieve and determine the disposition of data allocating resources, and to
communicate effectively with the operators and programmers.

2.9.1.1 COBOL/MVS Procedures

ICSD has established cataloged procedures to be used for applications in
a COBOL/MVS environment. There are procedures to support initial
syntax checking; logical checking; and procedures to support the CICS
environment.

The names of these procedures and their functions are presented in the
"COBOL/MVS Standards and Conventions," standards document 11.10.

The procedures use Computer Associates CA-OPTIMIZER. They should
be used to debug the logic of the COBOL application program.

The names of these procedures and their functions are presented in the
"COBOL CA-Optimizer Procedures," standards document 11.01.06.

2.9.1.2 COBOL with CICS Procedures

COBOL programs developed for interactive applications using IBM CICS
may be processed via cataloged procedures.

The names of these procedures and their functions are presented in the
"COBOL/VS Standards and Conventions," standards document 11.10.

2.9.1.3 PL/I Procedures
ICSD has cataloged procedures for applications development in a PL/I
environment. These procedures are for the users of the IBM OS PL/I

Level F and IBM OS PL/I Optimizing Compiler.

These versions of the IBM OS PL/I Compiler installed at ICSD are not
supported by IBM and are available to users on an as-is basis.

The names of these procedures and their functions are presented in the
"PL/I Standards and Conventions," standards document 11.16.
2.9.2 Instream Procedures

Instream procedures are used like cataloged procedures. The difference is that

Program Planning and Design Page 7
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

cataloged procedures are members of a partitioned data set, and the statements
for the in-stream procedure are placed in the job input stream after the JOB
statement. In-stream procedure specifications should be used to test proposed
production job streams. They may also be used for limited-use utility
procedures. These in-stream procedures may be cataloged in the partitioned
data set established for an agency or the "EDPD.PROCLIBA" at a later time for
production runs. Any control statements for these procedures may be cataloged
in the partitioned data set established for an agency or the "EDPD.PARMLIB" at
a later time for production runs. The JCL standards document 11.02 has a more
in-depth discussion on the topic "Using In-stream and Cataloged Procedures."

3 PROGRAM DESIGN

The program design provides for the visualization of all the pertinent logic identifying
functions and information concerning the particular application. All structures,
operations, and processes identified and described in the design should be
incorporated in the program.

The application program's identifying name should be an eight character variable that
conforms to the naming conventions described in the "Job Control Language
Standards," standards document 11.02.

The program should be self-documenting, readable, and easy to modify or maintain by
program maintenance personnel. To accomplish this, program labels, paragraphs, or

variables must be consistent in spelling and meaningful enough to document the
program's purpose, function, and logic.

3.1 Program Structure
The program's logical design will follow structured programming techniques.
Structured programming is a style of programming in which the structure of a
program is made as clear as possible by three control logic structures:

Seqguences

Selections

Iterations

These control logic structures may be combined to produce programs that handle
information-processing tasks of varying complexities.

Program Planning and Design
Rel: August 1. 2001 (draft)

Page 8

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

3.2 Program Function Structure Chart

The hierarchical flow of the processes that a structured program should
accomplish must be drawn so that the data flow through the job functions to be
executed can be traced in sequence, from top to bottom, without "skipping
around." It is easier to comprehend a function when all the statements that may
influence its action are physically close by. Top-down readability is one
consequence that should be accomplished when these functional modules are
developed by using only the previously defined control logic structures. An
example of a hierarchical structured chart is shown in Figure 1.

Top-down program development is strongly recommended. This involves
sketching a general flow of procedures, then iteratively write and test the
hierarchical-level groups of functions. This gives the critical top segments the
most testing and provides earlier warning of problems that may occur when all of
the segments are integrated into the program. The inputs and outputs are listed
and the processing related to them are specified. The hierarchical chart shows
the functions and subfunctions and their interrelationships.

Program Planning and Design Page 9
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

Edit
Inventory
Transactions
200-
100-Load | Edit 300-Format
Part nuentory
Transaction Summary
Number Page
910-Read 210-Edit 220-Format
Inventory Transaction Exception
Transaction Fields Line
N\
900-Read 110-Build 920-Write 930-Write
Part Part Page-Top Report
Number Table Entry Line Line
230-Edit 240-Edit 250-Farmat 930-Write
Mandatory Optional Report Heading Report
Fields Fields Line
270-Search 270-Search 920-Write 930-Write
Part-Number Part-Number Page-Top Report
Table Table Line’ Line

Figure 1. Hierarchical structured chart.

3.3 Structured Programming
As stated in section 3.1, all programs must be designed and written to use only
the control logic structures of sequence, selection, and iteration.

The program's logic and organization must be developed to satisfy two basic
requirements. The first is that a structured program must be divided into logical
segments, modules, or procedures. Each segment must have exactly one entry
point and exactly one exit point for program control. The second criteria are that
there must be logical paths from the entry point to the exit point that lead through
every control logic construct of the program.

The three control logic constructs are defined as follows:

Page 10

Program Planning and Design
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

a. Sequences are statements or procedures that are executed in the
order in which they appear in the program. The boxes in the
following figure are labeled "A" and "B." These are function boxes
that may contain anything from a single statement up to complete
processing modules.

Figure 2. The sequence construct.

b. Selection is a group of statements that allows for a choice between
two actions based on a predicate. In Figure 3, "P" is the predicate
or conditional statement. This is the IF-THEN-ELSE structure.

A

Figure 3.The selection construct.

C. The iteration is a control mechanism that is used for the repeated
execution of code while a condition is true (also called loop
control). As shown in the following figure, "P" is the predicate or
conditional in a decision diamond and "A" is the controlled code in
a function box.

Program Planning and Design Page 11
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

o

Figure 4. The iteration construct; (Do While Condition).

Any of the three basic structures may be substituted anywhere a
function box appears and still be a proper program. Flowcharts of
arbitrary complexity can be built up in this way.

The ability to substitute control logic structures for functions is
called the nesting of structures. This is illustrated below.

AN

Figure 5. Nesting the basic constructs.
3.3.1 lteration Variation

The basic iteration structure previously described is the DOWHILE structure but
closely related to it is the DOUNTIL structure. The difference between the
DOWHILE and DOUNTIL structures is that the DOWHILE predicate is tested
before executing the function; but the predicate in the DOUNTIL is tested after
executing the function. The DOUNTIL function will always execute at least once.

Program Planning and Design Page 12
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

Figure 6. The loop variation. The DOUNTIL construct.
3.3.2 The CASE Selection Structures

A CASE structure is a special type of selection. It is used to express a mutually
exclusive multiway branch. The value of a control variable will determine which
one of several routines will be executed. These mutually exclusive branches
could be implemented with multiple IF-THEN-ELSE statements. But the
structure to be used in PL/I is the SELECT-WHEN-OTHERWISE.

Figure 7. The selection variation. The CASE structure.
3.3.3 "GO TO" Statements and Labels

A well-structured program can be read in sequence without "skipping around."”
"GO TO" is not a standard control logic structure.

No special effort is required to eliminate "GO TOs." No extra effort is required to
"avoid" them. "GO TOs" will not occur when the standard control logic structures
are used. There are uncommon situations where the use of GO TOs may
improve readability, such as exception conditions to abort the processing of a
function.

Program Planning and Design Page 13
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

Do not use varying label variables, which may cause a segment or procedure's
label name to change.

3.3.4 Segmentation

Easy program readability minimizes the turning of many pages to understand
how something works. A program segment should be kept to a page of code.
Programs should be developed in logical functions (segments) such as
initialization, house- keeping, data manipulation, main-line processes and
sub-processes, 1/0, and summarization. The selected label name for these
segments will have numerical prefixes so that the external reference list
generated by the compilers to list the label names in a structured sequence
would document the logical flow of the segments. This range of prefixes has
been standardized for COBOL and can be found in the "COBOL/VS Standards,"
document 11.10.

The characteristics of good program segmentation are:

a. The program is divided into logical pieces that relate to each other
in a functional, hierarchical manner. Segments at the top of the
hierarchy should contain high-level control function statements.

b. A well-designed segment carries out only functions and processes
that are closely related to each other.

C. An identified segment communicates with other segments in
controlled ways. For example in PL/I, segments consist of
procedures and the only communication between them would be
through parameter lists.

3.3.5 Identification

Consistent indentation enhances readability so that the finished program
exhibits, in a pictorial way, the relationships among statements indented by a
consistent amount to show the scope of control.

In pseudo-code process statements and actual language code, the processing
associated with IF-THEN-ELSE will be indented right of the IF-THEN-ELSE
clause. The THEN-ELSE clauses will be alone on a line.

Program Planning and Design Page 14
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

The code controlled by a group or a block of codes should be indented to
visually isolate the group of statements to be processed within the group or

block.

Paragraph or label names will be left justified on a line by themselves.

Consistent indentation makes it easier to understand, to verify, and to check the

logic for correctness.

An example of logical nesting of the IF-THEN-ELSE with consistent indentation

is shown below:

IF CONDITION_P IS TRUE

THEN DO;
B=A+B;
IF CONDITION.Q IS TRUE
THEN
C=12;
ELSE DO;
C = 36;
IF CONDITION R IS TRUE
THEN
Y=X+Y;
ELSE
Z=X+/7Z
END IF;
END ELSE;
END IF;
END THEN,;
ELSE
A=A+B;

END IF;

3.3.6 Establishing Identification Guidelines

Each dp agency will establish a local convention and follow it consistently.

Whether statements are indented four, three, or two positions, the rule must be
set and followed or else the value of indentation will be lost.

34 Flowchart Logic

If flowcharts are used to express logic flow, they must include only the three basic

structures of sequences, selections, and iterations.

The flowchart symbol

Program Planning and Design
Rel: August 1. 2001 (draft)

Page 15

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

convention is the same as those defined on the IBM programmer flowchart
template jacket.

3.5 Pseudo-code Logic

The program's logic should be developed in pseudo-code structured English. The
specifications from the program narrative are defined in consistent verbs and
phrases that are used to express the three structured programming constructs.
The pseudo-code logic statements should be incorporated as documentation.

The initial design of each identified major function to accomplish the objectives of
the program is defined and then subdivided into smaller tasks. The initial design
does not include low-level, how-to detail statements. The program developer
manages complexity by evolving the problem solution one level of detail at a time.

The basic idea is to begin with a top-level logic, attach functional processes with a
little detail, then fill in the successive levels, refining and expanding the original
plans until the design is complete. An example of the evolution of a program
development from data flow to structure chart, and then to the first level of
pseudo-code is shown in Appendix A.

The basic control logic structures and indentation in pseudo- code are used in a
carefully controlled way. Pseudo-code uses statements similar to programming
statements but they are not bound by formal syntactical rules. Pseudo-code is
used to spell out detailed design logic. Because of these similarities the
translation from pseudo-code functional statements to the programming language
statements should be straightforward.

Meaningful data, procedure, or label names in the form of an action word plus a
qualified object are used to identify the purpose or function of the data or
processing procedures and program elements.

Program statements implementing control logic structures are indented to show
the scope of influence of the structures.

3.6 Efficiency Considerations
A "highly efficient” program that is very difficult to maintain is not really efficient in

the context of total cost. Emphasis must also be placed on program
maintainability and effectiveness as well as computer efficiency.

Program Planning and Design Page 16
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

3.7 Fine Tuning the Program

Fine tuning a program may become necessary to optimize the use of the CPU.
One way to minimize the job's time would be to identify those portions of the
program that are most heavily used and concentrate on those few segments.
Recode the one-time "called" procedures into in-line code. The short, heavily
used loops can be optimized by moving statements that are not directly affected
by the loop outside of the loop. Do not use the compiler for data conversions.

Keep the specification of the 1/O verbs down to a bare minimum, ideally only one
I/O statement per file.

If excessive paging in a virtual storage system is a problem, place procedures that
are used together close to each other so their load modules should be placed in
the same virtual page.

3.8 References

In addition to this discussion on Structured Programming, a similar discussion may
be found in the SDM/Structured SIS manual. And a related discussion may be
found in Chapter 23 of the DYL-280 reference manual, standards document 70.05.

4 PROGRAMMING AND TESTING

The State's established programming language standards should be followed during
the development of programming code for any program development. Each agency dp
coordinator has a copy of the standards for the languages supported at ICSD. By
following these standards, the programs within application systems should then be
uniform and consistent in structure, style, and content. The project analyst is
responsible for establishing common subroutines to standardize the common
processes within a system. The programming code should be self-documenting,
readable, and easy to modify, maintain, and update by other maintenance programming
personnel.

The project system analyst is responsible for developing the system test plan and
strategy for system integration. For the continuity and integrity of the system
throughout its lifetime, the programmer should develop a permanent set of data that
should test all branches in the program. This benchmarking data set should reside in a
library of test data sets. This data should be reapplied to the program whenever the
program is enhanced or modified.

4.1 Programming Languages

Program Planning and Design Page 17
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

The State's Executive Branch has standardized on COBOL. Programs may be
developed in PL/I, FORTRAN, or Basic Assembler Language if there is a need for
compatibility with existing software or if the application is better suited for these
languages. State supported data base languages are ADABAS and NATURAL on
the IBM. On-line IBM-based applications may be created with CICS. The
programmer may recommend an application programming language, but the
project system analyst is responsible for the final determination of the program's
language. All of these languages have a State standards document that the
agency dp coordinator has on file.

4.2 Utility Software

Utility software are general-purpose programs to perform commonly executed
functions. Some utilities available at ICSD include EasyTrieve Plus, IBM/ISPF,
FDR (Fast Dump Restore), PANVALET, and CA-SORT. A listing and description
of utility softwares that are available at ICSD may be found in standards document
04.01.

4.3 Programmer Productivity Tools

ICSD supports several application development tools. A productivity software
product from Computer Associates named CA-Optimizer can be used to improve
COBOL program development and testing time. Training in the use of these
products is coordinated through the agency dp coordinator.

4.4 Program Testing

Program testing procedures begins with desk checking of the language code for
spelling errors. The second level of testing is the execution of the program with
the language compiler to achieve a syntactically correct program. The third level
of testing is to check the logic of the program so that the program does what it was
intended to do in the simplest and most efficient manner, and that all logical paths
are tested out.

441 Test Data Sets

The State has software products that are capable of creating test data. The
reference manual and supporting documentation to use utilities is available in
standards attachments — Vendor Materials. The IBM System Utilities manuals can
be acquired by the DP Coordinator for each Executive Branch department through
their IBM marketing representative.

Program Planning and Design Page 18
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

4.5 Program Documentation

Program documentation for production jobs must be standardized to minimize any
need for intervention between the person who developed the program and the
person who will be maintaining the program. The program developer must
supplement the self-documented program with:

The system flowchart showing the placement of the program in the system.

The data set names of the data to be used in the program, the data sets and
reports that will be sent out of the program, and the benchmarking test data
sets with their DDNAME's.

A listing of the application defined cataloged procedures in the job stream.

A listing of JCL control parameters or control statement members stored in a
parameter library like "EDPD.PARMLIB."

A listing of the sample execution run of the program and sample output
reports.

5 PROGRAM IMPLEMENTATION

The implementation of a production program must be preceded by conversion
procedures developed by the project system analyst. The conversion procedures
should include a phase to train the users of the program and steps to migrate the users
operations to implement and use the program.

51 Source Program Storage

All source code to run on the IBM systems will be stored in PANVALET files.

During the testing mode, they will be stored in the data set "EDPD.PANVTEST."

During the production mode, they should be stored in the data set
"EDPD.PANVPROD." The execution procedures can be found in the "PANVALET
User's Guide," standards document 11.04.01.

5.2 Load Module Program Storage
All load modules for test programs on the IBM mainframe systems will be stored

on the ICSD system data set "EDPD.LINKLIBT." All load modules for production
programs will be stored on the ICSD system data set "EDPD.LINKLIBP."

Program Planning and Design Page 19
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

53 Converting from Test to Production

Before the program is turned in as a completed task, the programmer should refer
to standards document 07.05 to find out the procedures and documentation that
must be accomplished to convert the program from test to production.

54 User's Documentation

The recommended contents of the User's Documentation may be found in
SDM/Structured Volume VIII, Implementation Phase. In most cases, the project
group that developed the application is responsible for developing the user's
documentation.

55 Operation's Documentation

In most cases, the project group that develops the application is responsible for
developing the operation's documentation. The description and contents of the
required documents for the "Operation's Documentation” is found in the "ICSD
Operations Documentation for Production Jobs," standards document 07.05.

5.6 Scheduling Test Jobs

The programmer is usually responsible for scheduling computer resources, time
for test jobs, and for coordinating the program's operational needs with the
Production Services Branch Scheduler. But for very large or special resource
requirements, the project manager should coordinate the test job scheduling.

5.7 Creating Production Job Streams

Once tested to the satisfaction of the agency, the regular submission of the
system's job control and procedures stream should either be transferred from the
applications development staff to the user, or transferred from the applications
development staff to the Production Services Branch. A cataloged job control
production stream must be created.

Before control of any IBM mainframe-based application is transferred from the
applications staff, the programmer must transfer all load modules from the test
development library, "EDPD.LINKLIBT," to the production library. This production
library is usually "EDPD.LINKLIBP," but it may be an agency-assigned partitioned
data set.

Program Planning and Design Page 20
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

The programmer will transfer IBM mainframe based application load modules
through TSO using ISPF.

Test to Production - LINKLIBT to LINKLIBP

Any application system to be handled by the Production Services
Control Section will have its load modules stored in the production
library defined by the Systems Services Branch which is usually
"EDPD.LINKLIBP."

Releasing EDPD.LINKLIBT Space

The physical transfer of the application's load module from test to
production occurs immediately when the control's transfer job
executes. But the physical delete of the load modules from
"EDPD.LINKLIBT" is done only once a day during the system
backups which are usually done by Production Services very early
the next morning.

Program Planning and Design Page 21
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

APPENDIX A
Structured Program Development
This example illustrates the transitions from a data flow diagram to a hierarchical
structured chart and to the initial pseudo-code of the program logic. This pseudo-code
is the foundation for the program to be developed. The details for the program comes
from expanding the application specifications into detailed procedural steps.

A definition for the special characters on the data flow diagram are:

"+" Identifies mutually exclusive processes.
e Identifies multiple paths that must be processed.
(+)
Dlsplcw External
Bad Bad =
— Bad — [nput - Input —
Inpiat
T
il
Raw Read Internal ...'d it Good Compute
= Raw — Raw —» Raw Best — Solut ion —:,-‘!-..\
Input Input Input | Input Input Solution |
.
"'-.___'__ -~ ""‘--.___.--" ___——___—___ :
_____~———*______
e
o -~
_,f”____d_ | 'ﬁ']l'itg)
. Formatted \.Q_IE-n:utmn External g
/ [Transaction < | Transaction Output
' L J
|I l ‘*-..,___'_F_.-""-
III' e (%) i
Ny - Format Format ted ’/I.‘isplajr External
—_— S = Printed ——
Solution Solution Solution Output
L -
-
Hypothetical Data Flow Diagram
Program Planning and Design Page 22

Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

(200)
Produce
Best
Solution
(500) (600) (700)
Get Good Compute Put Out
Input Best Solution
Solution
(
(710) (950)
Format Display
Solution Solution
(510)
(940)
Display Write
Bad Solution
Input Transaction

Hypothetical Program Hierarchical Structure Chart

Program Planning and Design Page 23
Rel: August 1. 2001 (draft)

Number: 11.01
Effective: 08/01/01

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

" " the diamond identified a decision process. The following
<> structure is used to illustrate an IF-THEN-ELSE process.

CONDITION
STATEMENT
<>
TRUE FALSE
PROCESSES PROCESSES
" jat the looped arrow identifies a group of processes that
is repeated in an iteration.
Program Planning and Design Page 24

Rel: August 1. 2001 (draft)

Department of Accounting and General Services
Information and Communication Services Division

| nformati on Technol ogy Standards

Number: 11.01
Effective: 08/01/01

The first level of pseudo-code logic is developed by reading the functional modules on
the previous hierarchical structure chart from left to right and top to bottom. Those
functional modules had been identified from the data flow diagram.

The next level of the pseudo-code evolution is the systematic expansion of these
functional modules with general processing steps identified from the application
specifications or with dummy modules if the processes are still being defined. This
pseudo-code is converted to a programming language and testing is done after each
increment of the functional module expansions is developed.

Pseudo-code logic development is an iterative process with more detailed processing
statements specified at the next level of the pseudo-code.

ASSUME THERE-IS-MORE-RAW-DATA
REPEAT 200-BEST-SOLUTION
WHILE THERE-IS-MORE-RAW-DATA

200-BEST-SOLUTION

PERFORM 500-GET-GOOD-INPUT

IF THERE-IS-NO-MORE-RAW-DATA

THEN

STOP-THE-JOB

PERFORM 600-COMPUTE-BEST-SOLUTION

PERFORM 700-PUT-OUT-SOLUTION
200-BEST-SOLUTION-ENDED

500-GET-GOOD-INPUT
PERFORM 900-READ-RAW-INPUT
PERFORM 510-EDIT-RAW-INPUT
IF BAD-RAW-INPUT
THEN
PERFORM 930-DISPLAY-BAD-INPUT
500-GET-GOOD-INPUT-ENDED

700-PUT-OUT-SOLUTION
PERFORM 710-FORMAT-SOLUTION

PERFORM 940-WRITE-SOLUTION-TRANSACTION

PERFORM 950-DISPLAY-SOLUTION
700-PUT-OUT-SOLUTION-ENDED

Hypothetical Pseudo-Code created from Hypothetical Program Hierarchical
Structure Chart by a hypothetical programmer.

Program Planning and Design
Rel: August 1. 2001 (draft)

Page 25

